

Test Report

产品名称:		塑壳断路器		
Name of Products:				
产品型号:	CDMX-160M,	CDMX-250M,	CDMX-400M,	CDMX-630M
Type:				
委托方:	德力西电气有限公司			
Client:				
检测类别:		委托	检测	
Kind of Test:				

上海电器设备检测所有限公司

SHANGHAI TESTING & INSPECTIONINSTITUTE FOR ELECTRICAL EQUIPMENT CO. LTD.

报告编号: <u>23ZAS01P04D31-35086-3</u> 第1页共17页

产品名称	塑壳断路器			育	新 标	/
型号	CDMX-160M, CDMX-250M, CDMX-400M, CDMX-630M					
技术参数	#03: CDMX-160M Ue:AC415V In:160A Icu:50kA 4P 拧紧力矩: 13Nm #05: CDMX-250M Ue:AC415V In:250A Icu:50kA 4P 拧紧力矩: 14Nm #07: CDMX-400M Ue:AC415V In:400A Icu:50kA 4P 拧紧力矩: 16Nm #08: CDMX-630M Ue:AC415V In:630A Icu:50kA 4P 拧紧力矩: 18Nm					
检测类别			委托检	测		
委托人	德力西电气有	有限公司	地 :	芹	上海市嘉定	区江桥镇爱特路 188 号 6 号楼
生产者	德力西电气有	有限公司	地 :	址	上海市嘉定	区江桥镇爱特路 188 号 6 号楼
送样数量	4台	送样者	1		产品编号	/
抽样地点	/	抽样者	/		抽样数量/	抽 /
抽样日期	/年/月	/ 日	到样日	期	2022	2年11月28日
样品编号			#03 #05 #0	7 #0	8	
检测依据	GB/T 14048.2 -2020《低压开关设备和控制设备 第 2 部分: 断路器》					
判定依据			委托方要	長求		
检测日期		2022年11	月 28 日~20)22 -	年 12 月 07 日	
	试验项目 1~12(见检验项目汇总表),提供数据。					
论					签发日期	: 2023年05月09日
备注	本报告数据源自 22ZAS01P04D31-09984					

批准(小献清

审核 侧结

编版字

序号	检测项目	依据标准条款	判定
1	额定极限短路分断能力 (#03 CDMX-160M Ue:AC415V In:160A Icu:50kA 4P)	8.3.5.3 及委托方要求	合格
2	验证介电耐受能力	8.3.5.4 及委托方要求	合格
3	验证过载脱扣器	8.3.5.5 及委托方要求	合格
4	额定极限短路分断能力 (#05 CDMX-250M Ue:AC415V In:250A Icu:50kA 4P)	8.3.5.3 及委托方要求	合格
5	验证介电耐受能力	8.3.5.4 及委托方要求	合格
6	验证过载脱扣器	8.3.5.5 及委托方要求	合格
7	额定极限短路分断能力 (#07 CDMX-400M Ue:AC415V In:400A Icu:50kA 4P)	8.3.5.3 及委托方要求	合格
8	验证介电耐受能力	8.3.5.4 及委托方要求	合格
9	验证过载脱扣器	8.3.5.5 及委托方要求	合格
10	额定极限短路分断能力 (#08 CDMX-630M Ue:AC415V In:630A Icu:50kA 4P)	8.3.5.3 及委托方要求	合格
11	验证介电耐受能力	8.3.5.4 及委托方要求	合格
12	验证过载脱扣器	8.3.5.5 及委托方要求	合格
	以下空白		

样品照片

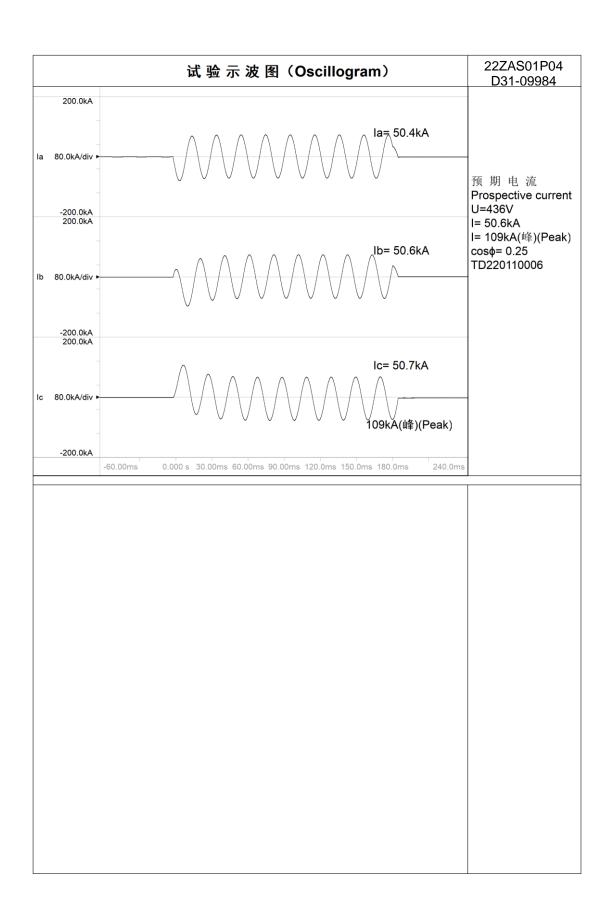
样品照片

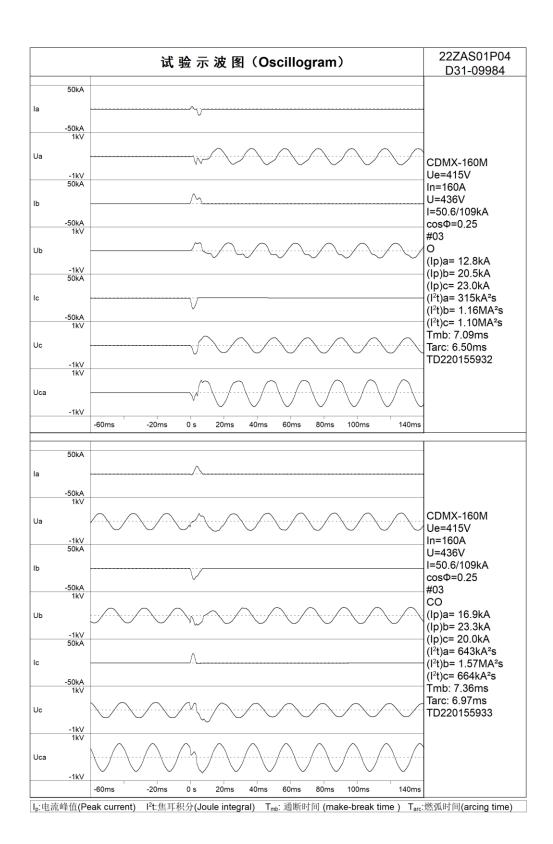
条 款	试验项目及试验要求	测量或观察结果	判定
示	风 巡坝日及 风 巡 安 不	#03	力化
	产品名称: 塑壳断路器		
	型号规格: CDMX-160M Ue:AC415V In:160A		
02527	Icu:50kA 4P		A 16
	额定极限短路分断能力	426	合格
委托方要求	* '	436	
	试验电流(有效值/峰值): 50/105 +5%kA	50.6/109	
	功率因数: 0.25-0.05	0.25	
	操作顺序: o-t-co(t≥3 min)	o -t- co t=189s	
	飞弧熔丝: ф0.80 mm	φ0.80	
	飞弧距离: 上下: 0/0 mm	0/0	
	左右: 0/0 mm	0/0	
	前后: 0/0 mm	0/0	
	预期电流示波图编号	TD220110006	
	"o"试验示波图编号	TD220155932	
	"co"试验示波图编号	TD220155933	
	断路器不应有过分损坏的迹象,也不应危及 操作者,而且不应产生持续燃弧、各极间或极对		
	框架的闪络、飞弧故障、检测电路中的熔断器不	符合要求	
	熔断。		
	× × × × × × × × × × × × × × × × × × ×		

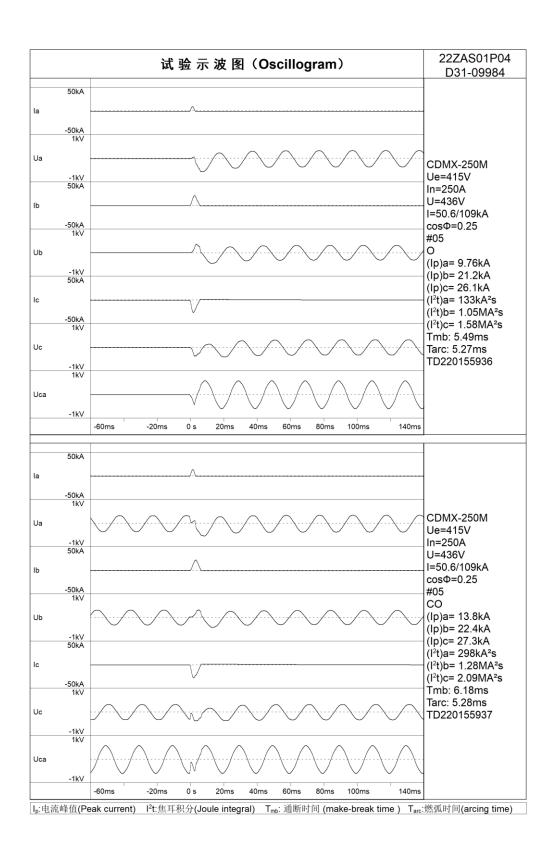
		测量或观察结果	
条 款	检测项目及检验要求		判 定
8.3.5.4	产品名称: 塑壳断路器型号规格: CDMX-160M Ue:AC415V In:160A Icu:50kA 4P 验证介电耐受能力试验电压: 2Ue, 最小值 1000V 施压时间: 5s 施压部位: 触头处于所有正常工作位置, 包括脱扣位置(如适用), 主电路所有接线端子连接一起(包括控制电路和辅助电路接至主电路)和外壳或安装板之间触头处于所有正常工作位置, 包括脱扣位置(如适用), 主电路每极与其他极连接在一起并接至外壳或安装板之间正常工作不接至主电路的每个控制电路和辅助电路与以下部位之间: - 主电路 - 共他电路 - 外露导体部分 - 外壳或安装板 断路器断开时每极进出端间试验时,无内部或外部的绝缘闪络和击穿或任何破坏性放电现象的发生 泄漏电流测量 试验电压: 1.1×Ue V	#03 无击穿或闪络现象 5 1.00×10 ³ 1.00×10 ³ / 1.00×10 ³ 符合要求	判 合格
8.3.5.5 及委托方要求	泄漏电流: ≤6mA(断开位置时每对触头之间) 验证过载脱扣器 周围空气温度: +40±2℃ 试验电流: 2.5×160A 各极分别进行 脱扣时间: ≤10 min	0.016 +40 401 L1 L2 L3 3min57s 3min48s 1min30s	合格

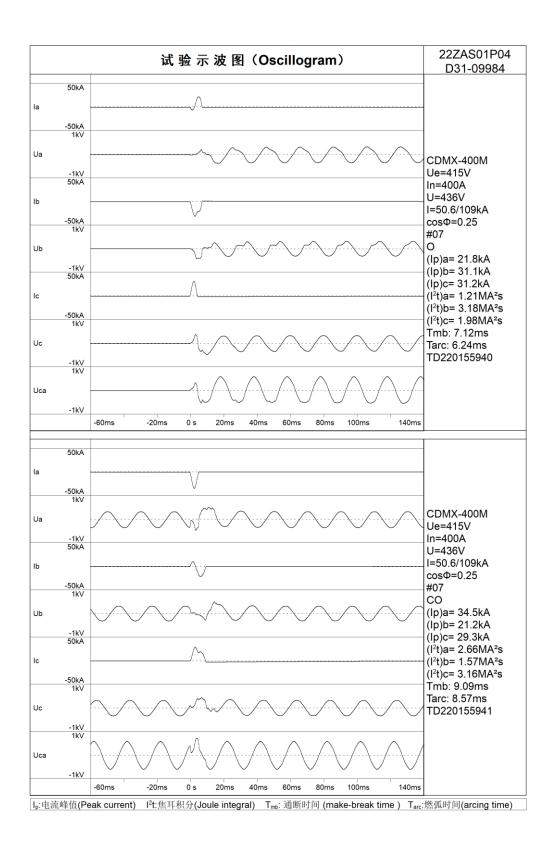
	Т	AN 된 유교로 상 H	
条 款	试验项目及试验要求	测量或观察结果	判 定
	and the state of t	#05	
	产品名称: 塑壳断路器		
	型号规格: CDMX-250M Ue:AC415V In:250A Icu:50kA 4P		
8.3.5.3 及	额定极限短路分断能力		合格
委托方要求	·	436	
	试验电流(有效值/峰值): 50/105 +5%kA	50.6/109	
	功率因数: 0.25-0.05	0.25	
	操作顺序: o-t-co(t≥3 min)	o -t- co t=183s	
	飞弧熔丝: ф0.80 mm	ф0.80	
	飞弧距离: 上下: 0/0 mm	0/0	
	左右: 0/0 mm	0/0	
	前后: 0/0 mm	0/0	
	预期电流示波图编号	TD220110006	
	"o"试验示波图编号	TD220155936	
	"co"试验示波图编号	TD220155937	
	断路器不应有过分损坏的迹象,也不应危及		
	操作者,而且不应产生持续燃弧、各极间或极对	符合要求	
	框架的闪络、飞弧故障、检测电路中的熔断器不	11 1 2 1	
	熔断。		

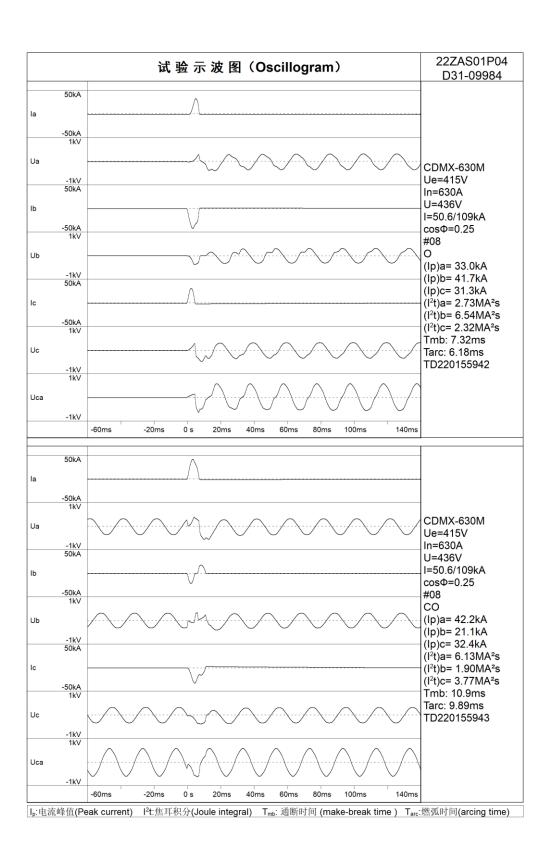
		测量或观察结果	
条 款	检测项目及检验要求		判 定
条 款 8.3.5.4 及委托方要求	应测项目及检验要求 产品名称: 塑壳断路器 型号规格: CDMX-250M Ue:AC415V In:250A Icu:50kA 4P 验证介电耐受能力 试验电压: 2Ue, 最小值 1000V 施压时间: 5s 施压部位: 触头处于所有正常工作位置,包括脱扣位置(如适用), 主电路所有接线端子连接一起(包括控制电路)和外壳或安装板之间 触头处于所有正常工作位置,包括脱扣位置(如适用), 主电路每极与其他极连接在一起并接至外壳或安装板之间正常工作不接至主电路的每个控制电路和辅助电路与以下部位之间: - 主电路 - 外露导体部分 - 外壳或安装板 断路导体部分 - 外壳或安装板 断路界开时每极进出端间试验时,无内部或外部的绝缘闪络和击穿或任何破坏性放电现象的发生	#05 无击穿或闪络现象 5 1.00×10 ³ 1.00×10 ³	判 合 格
8.3.5.5 及委托方要求	破坏性放电现象的发生 泄漏电流测量 试验电压: 1.1×UeV 泄漏电流: ≤6mA(断开位置时每对触头之间) 验证过载脱扣器 周围空气温度: +40±2℃ 试验电流: 2.5×250A 各极分别进行 脱扣时间: ≤10 min	460 0.013 +40 625 L1 L2 L3 1min52s 1min55s 2min10s	合格


A ±b	\4\1\7\2\D\7\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1	测量或观察结果	Wil 🔑
条款	试验项目及试验要求	#07	判 定
	产品名称: 塑壳断路器		
	型号规格: CDMX-400M Ue:AC415V In:400A		
	Icu:50kA 4P		A 17
	额定极限短路分断能力	10.5	合格
委托方要求	试验电压(有效值): 1.05×415 +5%V	436	
	试验电流(有效值/峰值): 50/105 +5%kA	50.6/109	
	功率因数: 0.25-0.05	0.25	
	操作顺序: o-t-co(t≥3 min)	o -t- co $t=186s$	
	飞弧熔丝: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ф0.80	
	飞弧距离: 上下: 0/0 mm	0/0	
	左右: 0/0 mm	0/0	
	前后: 0/0 mm	0/0	
	预期电流示波图编号	TD220110006	
	"o"试验示波图编号	TD220155940	
	"co"试验示波图编号	TD220155941	
	断路器不应有过分损坏的迹象,也不应危及		
	操作者,而且不应产生持续燃弧、各极间或极对	符合要求	
	框架的闪络、飞弧故障、检测电路中的熔断器不熔断。		
	<i>№</i> 四 。		


		测量或观察结果	
条 款	检测项目及检验要求	· ·	判 定
条 款 8.3.5.4 及委托方要求	应测项目及检验要求 产品名称: 塑壳断路器 型号规格: CDMX-400M Ue:AC415V In:400A Icu:50kA 4P 验证介电耐受能力 试验电压: 2Ue, 最小值 1000V 施压时间: 5s 施压部位: 触头处于所有正常工作位置, 包括脱扣位置(如适用), 主电路所有接线端子连接一起(包括控制电路和辅助电路接至主电路)和外壳或安装板之间 触头处于所有正常工作位置, 包括脱扣位置(如适用), 主电路每极与其他极连接在一起并接至外壳或安装板至下部位之间: - 主电路 - 共虚路 - 共虚路 - 外壳或安装板断路界开时每极进出端间试验时,无内部或外部的绝缘闪络和击穿或任何破坏性放电现象的发生 泄漏电流测量	#07 无击穿或闪络现象 5 1.00×10³ 1.00×10³ /	判 合 格
8.3.5.5 及委托方要求	试验电压: 1.1×UeV 泄漏电流: ≤6mA(断开位置时每对触头之间) 验证过载脱扣器 周围空气温度: +40±2℃ 试验电流: 2.5×400A 各极分别进行 脱扣时间: ≤10 min	460 0.014 +40 1.00×10 ³ L1 L2 L3 2min32s 2min54s 2min27s	合格


STIEE 检测报告


条 款	试验项目及试验要求	测量或观察结果	判 定
		#08	
	产品名称: 塑売断路器 型号规格: CDMX-630M Ue:AC415V In:630A		
	至うが命: CDMA-030M Ue:AC415V III:030A Icu:50kA 4P		
8.3.5.3 及	额定极限短路分断能力		合格
委托方要求	·	436	
, , , , ,	试验电流(有效值/峰值): 50/105 +5%kA	50.6/109	
	功率因数: 0.25-0.05	0.25	
	操作顺序: o-t-co(t≥3 min)	o -t- co t=186s	
	飞弧熔丝: ф0.80 mm	ф0.80	
	飞弧距离: 上下: 0/0 mm	0/0	
	左右: 0/0 mm	0/0	
	前后: 0/0 mm	0/0	
	预期电流示波图编号	TD220110006	
	"o"试验示波图编号	TD220155942	
	"co"试验示波图编号	TD220155943	
	断路器不应有过分损坏的迹象,也不应危及		
	操作者,而且不应产生持续燃弧、各极间或极对	符合要求	
	框架的闪络、飞弧故障、检测电路中的熔断器不	11 1 2 1	
	熔断。		


		测量或观察结果	
条 款	检测项目及检验要求		判 定
8.3.5.4	产品名称: 塑壳断路器 型号规格: CDMX-630M Ue:AC415V In:630A Icu:50kA 4P 验证介电耐受能力 试验电压: 2Ue, 最小值 1000V 施压时间: 5s 施压部位: 触头处于所有正常工作位置, 包括脱扣位置(如适用), 主电路所有接线端子连接一起(包括控制电路和辅助电路接至主电路)和外壳或安装板之间 触头处于所有正常工作位置, 包括脱扣位置(如适用), 主电路每极与其他极连接在一起并接至外壳或安装板之间正常工作不接至主电路的每个控制电路和辅助电路与以下部位之间: - 主电路 - 共應路等人一外壳或安装板断路路子、一种大量,是不是一种一个一种,是一种一种,是一种一种,是一种一种,是一种,是一种,是一种,是一种,是一种	#08 无击穿或闪络现象 5 1.00×10 ³ / 1.00×10 ³	判 合格
8.3.5.5 及委托方要求	泄漏电流: ≤6mA(断开位置时每对触头之间) 验证过载脱扣器 周围空气温度: +40±2℃ 试验电流: 2.5×630A 各极分别进行 脱扣时间: ≤10 min	0.015 +40 1.58×10 ³ L1 L2 L3 2min28s 2min09s 1min54s	合格

以下空白

声明

STATEMENT

1. 本报告(包括复制件)未加盖印章一律无效。

The test report (including its copy) without the seal shall be considered as invalid.

2. 本报告未经本实验室书面批准,不得部分复制,除非全部复制。

The test report shall not be reproduced except in full, without written approval of the laboratory.

3. 本报告无编制、审核、批准人签字无效。

The test report without the signature of the preparing person, review person and approval person shall be considered as invalid.

4. 本报告涂改无效。

Any corrections made on any parts of this test report shall be considered as invalid.

5. 检测结果只与委托检测的委托方送样样品有关。

This result is only related to the samples delivered.

6. 本机构在资质认定证书确定的能力范围内,对社会出具具有证明作用的数据、结果时,应标注检验检测资质认定标志,并加盖检验检测专用章。在资质认定证书确定的能力范围外,出具的检验检测报告或者证书上不得标注检验检测资质认定标志,该数据、结果对社会不具有证明作用。

When the laboratory issues data and results that prove the role within the scope of the qualifications determined by the qualification certificate, it shall mark the qualification certificate mark of the inspection and testing institution, and affix a special seal for inspection and testing. When the laboratory is outside the scope of the ability to determine the qualification certificate, the inspection and testing report or certificate issued shall not be marked with the qualification certificate of the inspection and testing institution. The data and results have no proof role of society.

检测单位/Testing 上海电器设备检测所有限公司

Laboratory: Shanghai Testing & Inspection Institute for Electrical Equipment Co. Ltd.

地址/ Address: 上海武宁路 505 号 / 505 Wuning Road, Shanghai, P.R. China;

上海环城北路 358 号/358 North Huancheng Road, Shangghai, P.R. China

邮编/ Postcode: 200063: 201401

电话/Tel: 021-62574990-405(业务接待/Reception)

021-62574990-279 (财务/Financial)

传真/Fax: 021-62545249 (业务接待/ Reception)

021-32255699 (财务/ Financial)

邮箱/email: epd@seari.com.cn

银行开户名/Bank 上海电器科学研究所(集团)有限公司 / Shanghai Electrical Apparatus Research

Account Name: Institute(Group)Co.,Ltd

银行帐号/Bank 215080082110001

Account:

开户银行/Bank: 招商银行上海分行曹家渡支行 / China Merchants Bank Shanghai Branch

投诉热线/tel/fax: 021-62574990-442 / 021-62435543

投诉邮箱/email: stiee_customer@seari.com.cn